• Themen
    • Bewegung / Entspannung
    • Ernährung
    • Hören / Sehen
    • Pflege
    • Psychologie / Lebensmut
    • Nachrichten aus der Medizin
    • Naturheilkunde
    • Archiv
  • Über uns
  • Kontakt
  •  Alle
  • 5
  • Nachrichten aus der Medizin
  • 5
  • Universitätsmedizin Mainz: KI-Modell verbessert Diagnostik bei Darmkrebs

Bessere Vorhersagen von Therapieansprechen und Überlebenschancen durch  innovatives Prognosemodell.

 Wissenschaftler:innen des Instituts für Pathologie der  Universitätsmedizin Mainz haben ein KI-basiertes Prognosemodell für Tumorerkrankungen des Dickdarms entwickelt. Mit Hilfe dieses sogenannten „Multi Stain Deep Learning“-Modells lassen sich mikroskopische Bilder von verschiedenen  Immunzellen im Tumor und seinem Umfeld effektiver und genauer auswerten als mit  bisherigen Methoden. Dadurch ist es möglich, den Krankheitsverlauf präziser zu  prognostizieren, also beispielsweise ob die Betroffenen auf eine Therapie ansprechen  würden und ob sie einen Rückfall erleiden könnten. Somit stellt die Mainzer Innovation  einen wichtigen Beitrag zur besseren Behandlung von Patient:innen mit Dickdarmkrebs  dar. Die Forschungsergebnisse wurden in der renommierten Zeitschrift Nature Medicine  veröffentlicht.  

Neuentwickeltes KI-Modell der Universitätsmedizin Mainz verbessert Prognose bei Dickdarmkrebs. Mithilfe dieses neuen Modells lassen sich verschiedene Immunzellen im Tumor aus mikroskopischen Bilden genauer auswerten. Die Immunzellen können einen Aufschluss darüber geben, wie effektiv die Tumor-Immunabwehr ist. Das Bild zeigt eine mikroskopische Aufnahme des Krebsgewebes. Die Immunzellen sind in braun dargestellt.
Bildquelle: © Universitätsmedizin Mainz / Dr. Sebastian Försch

„Wir haben erstmalig ein KI-basiertes Prognosemodell für Dickdarmkrebs entwickelt, welches  den sogenannten ‚AImmunoscore‘ aus einer Vielzahl von mikroskopischen Bildern des  Tumorgewebes ermittelt. Der große Vorteil liegt darin, dass unser sogenanntes ‚Multistain  Deep Learning‘-Modell eine viel genauere Prognosevorhersage liefert – genauer als andere  klinische, molekulare oder Immunzell-basierte Modelle. Verglichen mit der bislang üblichen manuellen Zählung von Immunzellen und den vorherrschenden einfachen statistischen  Verfahren, ermöglicht das neuentwickelte Modell somit eine bessere Vorhersage darüber, ob  eine Krebstherapie anspricht und wie die Überlebenschancen der Betroffenen sind“, erläutert  Dr. Sebastian Försch, Erstautor der Publikation und Arzt am Institut für Pathologie der  Universitätsmedizin Mainz. 

Immunzellen, die sich im Tumorgewebe aufhalten, können einen Aufschluss darüber geben,  wie hoch die Überlebenschancen der Krebspatient:innen sind. Die erworbene oder  sogenannte adaptive Immunabwehr bekämpft Tumorzellen und andere Erreger. Dafür setzt  das Immunsystem Immunzellen mit unterschiedlichen Funktionen ein. Die Art und Anzahl der  Immunzellen, die sich im Tumor und seiner Umgebung aufhalten, sind ein Indikator dafür, wie  effektiv die Tumor-Immunabwehr ist. Bisher gibt es jedoch keine Immunzell-basierte KI Anwendung, die in der Klinik eingesetzt wird. 

Um den KI-Algorithmus mit Hilfe von Deep Learning zu trainieren, haben die  Wissenschaftler:innen über 300.000 mikroskopische Bilder von rund 1000 Betroffenen mit  Dickdarmkrebs verwendet. Durch die Bildanalyse der verschiedenen Immunzellen konnte das  Programm den AImmunoscore bestimmen und damit die Rezidiv-freie Überlebenschance  vorhersagen. Die Genauigkeit des innovativen Modells lag dabei bei rund 80 Prozent. Mithilfe  des Modells konnten die Forschenden die Patient:innen dahingehend einordnen, ob sie ein  erhöhtes Risiko für einen Rückfall (Rezidiv) haben oder nicht.

Zudem hat das Forschungsteam ihr Multistain Deep Learning-Modell bei Patient:innen  getestet, die sich einer neoadjuvanten, sprich einer vor der Operationen durchgeführten, Radiochemotherapie unterzogen haben. Ziel war es, vorhersagen zu können, ob die Therapie  bei den Betroffenen ansprechen würde. Von den 117 Patient:innen wurden 86 Patient:innen  richtig eingestuft, das entspricht einer Genauigkeit von rund 74 Prozent.  

Die Forschenden der Universitätsmedizin Mainz kooperierten für dieses interdisziplinäre  Projekt mit Wissenschaftler:innen aus anderen Mainzer Institutionen sowie aus Erlangen, Kiel,  München, Aachen, Dresden und Marburg. Im nächsten Schritt wollen die  Wissenschaftler:innen die Forschungsergebnisse in großen prospektiven  Multizentrumsstudien bestätigen und das Prognosemodell weiter optimieren. 

Zu den Visionen des Forschungsteams ergänzt Dr. Försch: „Aktuell verfügbare Modelle sind  teilweise durch Patente geschützt und nahezu ausschließlich kommerziell erhältlich. Wir  möchten das Programm frei zur Verfügung stellen und für alle Forschenden weltweit nutzbar  machen. Unsere Vision ist es, eine webbasierte Anwendung zu entwickeln, auf die Ärztinnen  und Ärzte Bilddaten hochladen und sofort eine Prognoseeinschätzung für ihre Patient:innen  erhalten können. Dies würde die Behandlung von Dickdarmkrebs nachhaltig verbessern.“  

Darmkrebs zählt zu den weltweit häufigsten Tumorerkrankungen. In den westlichen  Industrienationen ist er für rund zehn Prozent alles krebsbedingten Todesfälle verantwortlich.  In Deutschland erkranken jährlich rund 61.000 Menschen neu an Darmkrebs – das sind rund  10 Prozent der neuen Tumorerkrankungen. Wird der Tumor rechtzeitig entdeckt, können im  ersten Stadium fast alle Betroffenen langfristig geheilt werden. Hier können KI-unterstützte  Prognosemodelle einen entscheidenden Beitrag leisten.

Quelle:
Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Mit Freunden teilen

  • Nutzungsbedingungen / Impressum
  • Datenschutz
advanteam – Gesellschaft für Kommunikation und Unternehmensberatung mbH